National Institute of Oceanography and Applied Geophysics

Example of data collection for Italy

Erika BARISON, Federica DONDA and Barbara MERSON

National Institute of Oceanography And Applied Geophysics - OGS Italy

Acknowledgment

Clean Hydrogen Partnership

The Project Is co-founded by European Uni

25/05/2023

Outline

Data acquisition and methods

Italy Hystories database

Remarks

<u>Main target</u>: to identify suitable UHS sites in depleted hydrocarbon fields and saline aquifers both onshore and offshore

- <u>Criteria</u>: ✓ Idoneous caprock/reservoir systems
 - ✓ Top reservoir depth 500 2500 m
 - ✓ Net reservoir thickness of 30 100 m
 - ✓ Reservoir extent 0.3 60 km²
 - ✓ Not overlay with seismogenic sources (for Italy: Database of Individual Seismogenic Sources - DISS M > 5.5 - INGV)

All the data and information used for the characterization of the H_2 storage sites are public and freely available

1) Review of previous studies on CO₂ storage

- ESTMAP project (Energy Storage Mapping and Planning)
- CO₂StoP project (CO₂ Storage Potential in Europe)
- Deep carbonate and terrigenous saline aquifers already identified as possible CO₂ storage sites (Civile et al., 2013; Donda et al., 2011)

2) Well log analysis

Deep carbonate and terrigenous saline aquifers already identified as possible CO_2 storage sites (Civile et al., 2013; Donda et al., 2011)

Shallower aquifers identified from well logs available at the ViDEPI (Visibility of Petroleum Exploration Data in Italy) database (<u>https://www.videpi.com/</u>)

cene

0

-

Σ

-

Φ

0

a

 \supset

Serraval

Paleoc.

Reservoir

Caprock

6

3) Depleted hydrocarbon fields

(<u>https://unmig.mite.gov.it/stoccaggio-del-gas-naturale/</u>)

Some of these sites are currently used for CH₄ temporary storage, but could be considered for UHS in future

Source name / URL	Description	Version / Date
Videpi <u>https://www.videpi.com/</u>)	"Visibility of Petroleum Exploration Data in Italy"	2022 (website is regularly updated)
Ministero dell'ambiente e della sicurezza energetica / Italian Ministry of Environment and Energy Security <u>https://unmig.mite.gov.it/stoccaggio-del-gas-naturale/</u>	Data concerning gas storage sites and hydrocarbon production	2022 (website is regularly updated)
Edison Stoccaggio <u>https://www.edisonstoccaggio.it/it/attivit</u> <u>a-e-impianti/i-nostri-impianti/</u>	Information concerning gas storage sites managed by Edison	2022
SNAM https://www.snam.it/it/chi- siamo/infrastrutture-snam/stoccaggio/	Information concerning gas storage sites managed by SNAM	2022
Ital Gas Storage https://www.igs.eu/	Information concerning gas storage sites managed by Ital Gas	2022
Gas infrastructure Europe <u>https://www.gie.eu/transparency/databa</u> <u>ses/storage-database/</u>	Operational data such as working gas volume, injection and withdrawal capacities of storage facilities as well as the under construction and planned storage sites.	2022

Hystories database

- ✓ Identification of Formations, Storage Units and traps
- ✓ Geographical and geological information
- Reservoir properties

 (e.g.: thickness, porosity, permeability)

✓ Capacity estimation

Hystories database - Storage Units

Reservoir type	Onshore	Offshore	Both onshore / offshore	Quantity
Shallow aquifers (500-800 m)	11	2	-	13
Deep Carbonate aquifers (>800 m)	9	3	2	14
Deep Terrigenous aquifers (>800 m)	10	2	1	13
Depleted hydrocarbon fields	26	0	-	26
TOTAL	56	7	3	66

Hystories database - Traps

- ✓ Identified 26 traps in depleted hydrocarbon fields storage units
- ✓ Information from technical reports available at VIDEPI database and from companies websites

Hystories database - Nothern Italy

Modified after Barison et al., 2023

Hystories database - Nothern Italy

13

Hystories database - Central Italy

Modified after Barison et al., 2023

Hystories database - Southern Italy

Modified after Barison et al., 2023

Hystories database - Capacity estimation

Reservoir	Hydrogen Static Volume (MMSm³)	Hydrogen Static Volume (TWh)
Ripalta stoccaggio SU	2073	6,6
Sergnano SU	1878	5,9
Cugno le Macine SU (Grottole)	800	2,5
Romanengo SU	340	1,1
Alfonsine SU	1868	5,9
Bordolano SU	1966	6,2
Bagnolo Mella SU	679	2,2
Cornegliano SU	149	0,5
Minerbio SU	2132	6,7
Settala SU	2063	6,5
S. Potito - Cotignola SU (Cotignola)	340	1,1
Collalto SU	340	1,1
San Benedetto	541	1,7
Poggiofiorito SU	172	0,5
Sinarca stoccaggio SU	336	1,1
Cugno le Macine SU (Ferrandina)	828	2,6
Fiume Treste SU	195	0,6
Sabbioncello SU	1722	5,5
Brugherio SU	1722	5,5
Cortemaggiore SU	1722	5,5
Italian Capacity	21876	69.2

The hydrogen capacity V_{H_2} (Sm³) is estimated with the following equation:

$$V_{H_2} = A * NT * \phi * E_{H_2} / B_{H_2}$$

Where:

A = area of the trap (km²),

NT = net thickness (m) of the porous and permeable formation,

 ϕ = average porosity of the trap,

 E_{H_2} = storage efficiency of hydrogen,

 B_{H_2} = volume factor for hydrogen (Rm³/Sm³) (the volume change between storage pressure and temperature conditions, and surface conditions).

Thanks to Yann Le Gallo (Geostock)

16

- In Italy, there are potentially suitable conditions for H₂ storage in aquifers both onshore and offshore.
- 2. We also considered **depleted gas fields**, as they have remarkable potential as H_2 storage and could be converted into H_2 storage sites in the future.
- 3. Our analyses show that there are ideal areas for UHS from a **geological and stratigraphical** point of view.
- 4. These results need to be considered as a starting point for **further investigations at a site-specific scale**, such as well-log correlation and comprehensive petrophysical characterization, integrated with geophysical data, such as seismic lines, to define the extension of the reservoirs and understand their **true hydrogen storage potential**.

INTERNATIONAL JOURNAL OF HYDROGEN ENERGY XXX (XXXX) XXX				
	Available online at www.sciencedirect.com			
\$~\$. {}	ScienceDirect	EDERGES ENCLOSE With the second secon		
ELSEVIER	journal homepage: www.elsevier.com/locate/he	HE		
First assessment of an area potentially suitable for underground hydrogen storage in Italy				
S. Mattera ^{a,*} , F. Donda ^a , U. Tinivella ^a , E. Barison ^a , Y. Le Gallo ^b , C. Vincent ^c				

Erika Barison ¹,*, Federica Donda ¹, Barbara Merson ¹, Yann Le Gallo ² and Arnaud Réveillère ²

Barison E, Donda F, Merson B, Le Gallo Y, Réveillère A. 2023. *An Insight into Underground Hydrogen Storage in Italy. Sustainability*. 2023; 15(8):6886. <u>https://doi.org/10.3390/su15086886</u>

Civile D., Zecchin M, Forlin E., Donda F., Volpi V., Merson B., Persoglia S., 2013. *CO*₂ *geological storage in the Italian carbonate succession* – Int. J. Greenh. Gas Con., 19, 101-116. <u>https://doi.org/10.1016/j.ijggc.2013.08.010</u>

Donda F., Volpi V., Persoglia S., Parushev D., 2011. *CO*₂ storage potential of deep saline aquifers: the case of Italy. Int. J.Greenh. Gas Con., 5, 327-335. https://doi.org/10.1016/j.ijggc.2010.08.009

Mattera S., Donda F., Tinivella U., Barison, Le Gallo Y., Vincent C. 2023. *First assessment of an area potentially suitable for underground hydrogen storage in Italy*. International Journal of Hydrogen Energy, 48 (47), 17940-17956, https://doi.org/10.1016/j.ijhydene.2023.01.192.

Hystories project consortium

Mineral and Energy Economy Research Institute Polish Academy of Sciences

Acknowledgment

This project has received funding from the Fuel Cells and Hydrogen 2 Joint Undertaking (now Clean Hydrogen Partnership) under Grant Agreement No 101007176. This Joint Undertaking receives support from the European Union's Horizon 2020 Research and Innovation program, Hydrogen Europe and Hydrogen Europe Research.

Thank you !

