

Panel Discussion : Impacts of microbiological activity in underground storages

Anne-Catherine Ahn¹, Anthony. Ranchou-Peyruse^{2,3}, Irina Sin⁴

 Wageningen University and Research, The Netherlands
 Université de Pau et des Pays de l'Adour, E2S UPPA, CNRS, IPREM, Pau, France
 Joint Laboratory SEnGA, UPPA-E2S-Teréga, Pau, France
 Mines Paris - PSL, France

Acknowledgment

Clean Hydrogen Partnership

25/05/2023

Outline

Anne-Catherine Ahn - Wageningen University

1

Anthony Ranchou-Peyruse - Université de Pau

4

Irina Sin - Mines Paris

Technical Challenges

Microbial H₂ conversions: Background and HyUSPRe experimental results

Anne-Catherine Ahn¹, Adrian Hidalgo-Ulloa¹, Yehor Pererva¹, Bart Lomans², Diana Sousa¹

Wageningen University and Research, The Netherlands
 Shell Global Solutions International B.V., The Netherlands

Acknowledgment

Clean Hydrogen Partnership

25/05/2023

H₂ team at WUR

HyUSPre: H₂ underground storage in porous reservoirs

Microbial life in the subsurface

- Subsurface environment harbors extreme conditions:
 - High temperature, pressure and salinity
 - Limited nutrients and energy source
 - Limited pore sizes
- Deep biosphere composes 2-19% of the Earth's total biomass
- Microbial cell number & diversity
 - Cell numbers between 8.65×10⁴ 1.01×10⁶/g rock
 - Decreases over the depth
 - Depends on environmental conditions
- Life is possible until at least a depth of 5000 m
- Most microorganisms are in dormant state

Microbial impact on subsurface H₂ storage

- H₂ is an important, easy & high energy source in subsurface where e- donors are scarce
- Potential impact of microbes in H₂ storage:
 - Loss of the stored H₂ through metabolic processes
 - Formation of contaminating products, such as H₂S and CH₄
 - Microbial-influenced corrosion (MIC)
 - Loss of H₂ injectivity due to bio-based solids (biomass, FeS, etc.)

Knowledge gaps:

- Microbial taxa which are relevant for potential UHS sites
- Microbial kinetics at high partial H₂ pressures and its dependency on T, P, salinity and pH

Aim of the WP3 in HyUSPre

Microbial community analysis of target UHS sites

https://www.hyuspre.eu/index.php/downloads/

• Determination of window of viability:

Aim of the WP3 in HyUSPre

• Microbial community analysis of target UHS sites

Case studies: Incubations at specific site's condition of formation water

Sampling & relevance of environmental samples

- Partners provided environmental brine samples:
- -29 porous reservoir samples from 4 partners
- -2 salt cavern samples from 2 partners
- \rightarrow Including potential UHS target sites and actual UHS pilots
- \rightarrow Ability to use environmental microbial communities for experiments

After 6 months H₂ storage test phase, liquid and filter samples, and cores were retrieved

Plan:

-Incubations at different temperatures at low pressure and at the site's conditions at high pressure

-Microbial community analysis of filter and core samples

Current state of knowledge for microbial survivability limits under subsurface H₂ storage conditions:

Parameters	Microbial optimum & limit	Methanogens	Sulfate reducers	Acetogens	- Q	 ▲ Methanogens ■ Homoaceteogens ○ SSRM
Tomporaturo	Ontimum	15,0890	10 10690	20, 20%	4 -	~
remperature	Optimum	15-98°C	10-100°C	20-30°C		
(H_2 storage: 22.5-100°C)	Limits	122°C	113°C	72°C	Ω	° 🗳
Pressure (H ₂ storage: 1-50 MPa)	Optimum		0-30/50 MPa		Critcal NaCl (2 3	o o o o o o o o o o o o o o o o o o o
Salinity	Optimum	0-0.77 M NaCl	0-0.4 M NaCl	0-0.4 M NaCl	U	¢¤°°°° ° م∧° ∧ .
(H ₂ storage: 0-5 M NaCl)	Limits	3.4 M NaCl	4.2 M NaCl	4.4 M NaCl		
рН	Optimum Limits	4-10	9.5	NA 3.6-10.7		
		. 10	1 10	0.0 10.7	0	20 40 60 80 100 120 Critical temperature (° C)

(Thaysen et al., 2021, doi: 0.1016/j.rser.2021.111481)

- Temperature and salinity are the most constraining factors
 - Temperature alone: upper life limit is 122°C
 - Combination of temperature and salinity: >55°C, and >1.7 M NaCl

Window of viability: Incubations

• Environmental samples with 80%H₂/20%CO₂ at 1.7 bar, different temperatures and media

	Sample	T (°C)	P (bar)	рΗ	Conductivity (mS/cm)	Medium	35°C	50°C	65°C	80°C		
\$			45	7.72	49.24	Sample amended with nutrients/trace	Acetogen	Methanogen	Methanogen			
	А	51				Mineral medium (MM)	Methanogen	Methanogen	Methanogen			
						MM with 0.5 M Na ⁺ + 3mM SO_4^{2-}	SO ₄ ²⁻ reducer	SO ₄ ²⁻ reducer				
					79.74	Sample amended with nutrients/trace	Methanogen					
oir	В	51	87	5.95		Mineral medium (MM)	Methanogen	Acetoaen				
SLV(MM with 0.5 M Na+ + 3mM SO ₄ 2-	Methanogen + SO ₄ ²⁻ reducer	SO ₄ ²⁻ reducer			4	
averns Porous rese	C	72 107	97-206	ND	ND	Sample amended with nutrients/trace	Acetogen	Methanogen	Methanogen		СН	
	C	72-107				MM with 0.5 M Na+ + 3mM SO ₄ 2-	SO ₄ ²⁻ reducer + Acetogen	Methanogen	Methanogen			
	D	20.41	56	ND	ND	Sample amended with nutrients/trace	Methanogen	Methanogen				
	D	59-41				MM with 0.5 M Na ⁺ + 3mM SO_4^{2-}	Methanogen	SO ₄ ²⁻ reducer	SO ₄ ²⁻ reducer			
	Б	E 109	50 150	150 5.2	217	Sample amended with nutrients/trace		SO ₄ ²⁻ reducer			N	
		109	00-100	5.2	217	MM with 0.5 M Na+		SO ₄ ²⁻ reducer	SO ₄ ²⁻ reducer			
	- F 103 5	103	50-150	5.2	211	Sample amended with nutrients/trace						
		105 50-150 5.5	5.5	211	MM with 0.5 M Na+		SO ₄ ²⁻ reducer	SO ₄ ²⁻ reducer	SO ₄ ²⁻ reducer			
						Sample amended with nutrients/trace	SO ₄ ²⁻ reducer	SO ₄ ²- reducer + Acetogen				
	G	45	80-200	6.3	240	MM with 0.5 M Na ⁺			SO ₄ ²⁻ reducer		/	
						MM with 2 M Na+						
ö						Sample amended with nutrients/trace						
alt	Н	20-80	40-275	6.9	219	MM with 0.5 M Na+						
Ň						MM with 2 M Na⁺						

13

Window of viability: Incubations

• Environmental samples with 100% H₂ at 1.7 bar and different temperatures:

ervoirs	Sample	T (°C)	P (bar)	рΗ	Conductivity (mS/cm)	35°C	50°C	65°C	80°C
res	А	51	45	7.72	49.24	Methanogen	Methanogen	Methanogen	
SUC	В	51	87	5.95	79.74				
Porc	С	72-107	97-206	ND	ND	Methanogen	Methanogen	Methanogen	Methanogen
s _	D	39-41	56	ND	ND		SO ₄ ²⁻ reducer	SO ₄ ²⁻ reducer	
ern	G	45	80-200	6.3	240		SO ₄ ²⁻ reducer		
Cav	Н	20-80	40-275	6.9	219				
Salt				N		00			

Window of viability: Incubations

• "Master mix" incubation

Medium	35°C	50°C	65°C	80°C
MM with 0.5 M Na+ + 3mM SO ₄ ²⁻	Methanogen + SO₄ ²⁻ reducer	Methanogen + SO ₄ ²⁻ reducer	Methanogen	
MM with 2 M Na+ + 3mM SO ₄ ²⁻	Methanogen + SO ₄ ²⁻ reducer	Methanogen + SO ₄ ²⁻ reducer	SO ₄ ²⁻ reducer	

 \rightarrow 16S rRNA: Peptococcaceae (amongst others)

Redefines the currently known window of viability to the combination of at least >65°C, and >2 M NaCl

Determination of microbial kinetics

- High pressure & temperature reactors:
- In-house systems:
- 3 reactors
- 0.6 L
- 70 Bar (56 Bar op)
- pH/P/°T monitor
- °T (max 350 °C)
- SS 316
- Lining

- Newly arrived systems:
- 4 reactors
- 0.5 L
- 250 Bar (200 Bar op)
- P/°T monitor
- °T (max 350 °C)
- SS 316
- Lining and coating

Conclusions and outlook

- Window of viability
- Limits in incubations so far:

Acetogenesis: 50 °C Sulfate reduction: 80 °C Methanogenesis: 80 °C

- Sulfate reduction could take place when sulfate was added/present
- Window of viability shifted to at least the combination of 65° C and 2 M NaCl
- Determination of kinetic data
- Design and installation of HP/HT reactors
- Determine kinetics of microbial growth & activity
 Implement results into DuMuX model (TU Clausthal)
 Predict overall performance of H₂ storage in porous reservoirs

WUR:

- H₂ team: Adrian Hidalgo-Ulloa, Yehor Pererva, Ton van Gelder, Bart Lomans, Diana Sousa
- Microbial Physiology and Molecular Ecology groups at Microbiology

Industrial and project partners:

/Stock

Co-funded by the European Union

oreReact

Thank you for your attention!

Questions?

Hydrogen H2

zero emission

Injection of new gases (H_2 and O_2) in UGS in deep aquifers

J. MURA¹, M. RANCHOU-PEYRUSE^{1,2,3}, M. GUIGNARD², P. G. HADDAD¹, M. DUCOUSSO^{1,3}, F. CASTERAN^{1,3}, P. SÉNÉCHAL⁴, M-P. ISAURE¹, P. MOONEN⁴, M. LARREGIEU², I. LEHECHO^{2,3}, G. HOAREAU⁵, A. PETIT⁶, P. CHIQUET^{3,7}, G. CAUMETTE^{3,8}, P. CÉZAC^{1,3} AND <u>A. RANCHOU-</u> <u>PEYRUSE^{2,3}</u>

¹ UNIVERSITÉ DE PAU ET DES PAYS DE L'ADOUR, E2S UPPA, LATEP, PAU, FRANCE
 ² UNIVERSITÉ DE PAU ET DES PAYS DE L'ADOUR, E2S UPPA, CNRS, IPREM, PAU, FRANCE
 ³ JOINT LABORATORY SENGA, UPPA-E2S-TERÉGA, PAU, FRANCE
 ⁴ UNIVERSITÉ DE PAU ET DES PAYS DE L'ADOUR, E2S UPPA, CNRS, DMEX, PAU, FRANCE
 ⁵ UNIVERSITÉ DE PAU ET DES PAYS DE L'ADOUR, E2S UPPA, CNRS, TOTAL, LFCR, PAU, FRANCE
 ⁶ STORENGY - GEOSCIENCES DEPARTMENT, BOIS-COLOMBES, FRANCE
 ⁷ TERÉGA - GEOSCIENCES DEPARTMENT, PAU, FRANCE

⁸ TERÉGA - ENVIRONMENT DEPARTMENT, PAU, FRANCE

Acknowledgment

Clean Hydrogen Partnership

The Project is co-founded by European Union

Injection of H_2 (Power-to-gas) and O_2 (biomethane) in the natural gas network

Expected arrival of these gases in the UGS

Is there a risk to the storage facilities ?

2

3

How do indigenous microbial communities respond ?

Is there an effect on the quality of the stored gas ?

Recreating the UGS in situ conditions in a laboratory reactor

Recreating the UGS in situ conditions in a laboratory reactor

 \rightarrow RINGS reactor can work up to 150°C and 150 bars

 \rightarrow Downhole water (containing microorganisms) and rock phases are sampled in the real UGS

 \rightarrow The initial gas phase is composed of CH₄ (99%), CO₂ (1%) and traces of monoaromatic hydrocarbons (benzene and toluene).

 \rightarrow Deformable reactor (Piston to compensate for the pressure drop)

Formation water sampling

Formation water sampling

- \rightarrow Sampling of the formation water (- 580m to 1200m)
- $\rightarrow\,$ Guarantee the non contamination of the microbial community
- \rightarrow Control the pressure / depressurization

TYPE Original Research PUBLISHED 04 January 2023 DOI 10.3389/fmicb.2022.1012400

A deep continental aquifer downhole sampler for microbiological studies

Magali Ranchou-Peyruse^{1,2,3}, Marion Guignard¹, Perla G. Haddad², Sylvain Robin⁴, Fabrice Boesch⁴, Maud Lanot⁴, Hervé Carrier^{3,5}, David Dequidt⁶, Pierre Chiquet^{3,7}, Guilhem Caumette^{3,7}, Pierre Cézac^{2,3} and Anthony Ranchou-Peyruse^{1,3*}

Three aquifers tested for the injection of H_2

B

Three aquifers tested

hystories

Microbial communities monitoring

Microbial communities monitoring

 \rightarrow A community initially dominated by fermenters and sulfate-reducers

 \rightarrow The Ammonificaceae family includes sulfate-reducers

 \rightarrow Formate production (assumed by (homo)-acetogens)

 \rightarrow Methanogenesis does not necessarily take place

ticle is licensed under a Creative (

29

P. G. Haddad ³, M. Ranchou-Peyruse 🔟 🎂, M. Guignard ^c, J. Mura 🔟 ^a, F. Casteran ^{ab}, L. Ronjon-Magand 🗓 ^c, P. Senechal ^d, M. Isaure 🔟 🤄 P. Moonen de, G. Hoareau e, D. Dequidt 🤇 P. Chiquet 🎉 G. Caumette bh, P. Cezac ab and A. Ranchou-Peyruse 🔟 🕩

+ Comparative study of three H₂ geological storages in deep aquifers simulated in high pressure reactor (in process)

An aquifer tested for O₂ injection (1% & 100 ppm)

5

An aquifer tested for 1% O₂ injection (=10 000 ppm) → changes observed on the water

Sulfate evolution

- \rightarrow sulfate was consumed by sulfate-reducers
- \rightarrow O₂ injection stopped the sulfate consumption (death or inhibition of sulfate-reducers)
- \rightarrow Acetate is produced from micro-organisms at the beginning of the experiment

An aquifer tested for 1% O₂ injection (=10 000 ppm) → changes observed on the water

- \rightarrow Decrease of toluene before O₂ injection
- \rightarrow 1% O₂ injection stopped the toluene disappearance

An aquifer tested for 1% O₂ injection (=10 000 ppm) → changes observed on the microbial community

→ Negative effect of the 1% O_2 injection on the microbial community = hyperoxic conditions = toxicity

storengy Terega

Science of The Total Environment Volume 806, Part 3, 1 February 2022, 150690

Biological, geological and chemical effects of oxygen injection in underground gas storage aquifers in the setting of biomethane deployment

<u>Perla G. Haddad</u>^a, Jean Mura^a, Franck Castéran^{a b}, Marion Guignard^c, <u>Magali Ranchou-Peyruse^{a b c}, Pascale Sénéchal^d, Marie Larregieu^c, Marie-Pierre Isaure^c, Isabelle Svahn^e, Peter Moonen^d, Isabelle Le Hécho^{b c}, Guilhem Hoareau^f, Pierre Chiquet^{b g}, <u>Guilhem Caumette^{b g}, David Dequidt^h, Pierre Cézac^{a b}, Anthony Ranchou-Peyruse^{b c} 2 🛛</u></u>

An aquifer tested for 100 ppm O₂ injection → changes observed on the microbial community

storengy 💮 terēga

hystories Hydrogen Storage in European Subsurface

Physicochemical and microbiological effects of geological biomethane storage in deep aquifers: introduction of O_2 as a cocontaminant (submitted)

Thank you !

Reactive transport modelling for underground gas storage

Irina SIN

Mines Paris - PSL, France

Acknowledgment

Clean Hydrogen Partnership

26/05/2023

Outline

Reactive transport

Phase equilibria

1

2

3

4

Gas storage: oxygen reactivity

Extension to other gases

Reactive transport

HYTEC

Flow

(Un)saturated, multiphase Non-isothermal Double porosity Anisotropy

Transport

Aqueous and gaseous Advection, diffusion, dispersion Particle transport

Thermodynamics

Phase equilibria, EOS Non-ideal gas, solution Multicomponent mixtures Thermodynamic properties

Biogeochemistry

Acid/base, redox Precipitation, dissolution Microbiological reactions Isotopic fractionation

Mechanics

- **HYTEC=T**hermo+**H**ydro+**C**hemistry
- **CHESS** geochemical core of HYTEC
- (Un)structured mesh
- History matching
- Coupling with mechanics
- Water balance
- Variable porosity
- Chemical and mechanical clogging

References

- van der Lee et al., Comp & Geos, 2003
- Sin, Lagneau and Corvisier, Adv. in Water Res, 2017
- Seigneur et al., Adv. in Water Res, 2018

Reactive transport code HYTEC since 1996

Phase equilibria

Phase equilibria

Assymetric approach

$$f_i^g = Py_i \varphi_i = K_i^H \gamma_i x_i = f_i^l$$

▶ φ is the fugacity coefficient calculated by EOS models: e.g. cubic EOS – Peng-Robinson (1978)

$$P = \frac{RT}{v - b^{\mathrm{PR}}} - \frac{a^{\mathrm{PR}}(T)}{v(v + b^{\mathrm{PR}}) + b^{\mathrm{PR}}(v - b^{\mathrm{PR}})}$$

▶ K^H is the corrected Henry's constant

$$K_{i}^{H}\left(T,P\right) = K_{g}^{H,0}\left(T,P^{sat}\right)\exp\left[\frac{\left(P-P^{sat}\right)V_{i}^{\infty}}{RT}\right]$$

▶ γ_i is the activity coefficient (B-dot, SIT)

$$\ln \gamma_i = -\frac{AZ_i^2 \sqrt{I}}{1 + 1.5\sqrt{I}} + \sum_j [C_j]\epsilon_{ij}$$

Advantages

- ▶ Activity models adapted for aqueous geochemistry.
- K^H , BIP and EOS parameters adapted to non-ideal gases regarding P and T.
- ▶ Analytical solution for the PR-type EOS models.
- ► Group contribution structure, easy application for mixtures. Required data
 - φ : critical temperatures and pressures T_c, P_c, Z_c, Ω , mixing rule, binary interaction parameters
 - ► K^H: Henry's constants at saturated vapor pressure, molar volumes for pressure correction
 - ► γ_i : Debye-Hückel and B-dot general parameters, binary interaction parameters for solutes (SIT)
 - ▶ Experimental lab of CTP&Geosciences, Mines Paris PSL
 - ► ANR GAZ ANNEXES, SIGARRR, FLUIDSTORY

Phase equilibria

Solubility of H2 in water and NaCl-brine

Solubility/reactivity of CO₂ in water and NaCl-brine

FluidSTORY project, Chabab et al., 2019, Sin and Corvisier 2019

Gas storage: oxygen reactivity

B

Air injection into a sandstone reservoir (the Paris Basin) **Construction**

- 1) Caprock
- 2) Reservoir
- 3) Surface facilities
- 4) Injection and withdrawal wells
- 5) Monitoring wells
- 6) Monitoring wells of the upper aquifer
- 7) Upper aquifer
- 8) Cushion gas with O2-depleted air

Air injection into a sandstone reservoir (the Paris Basin) **Construction**

▶ What are the key mechanisms? What impact on the aquifer?

storengy MINES PARIS

Gas-water-rock interactions

PSL 🗶

Ine société de ENGIE MINES PARIS

• What are the key mechanisms? What impact on the aquifer? storengy

Gas-water-rock interactions: batch modelling

- + Available data (borehole water sampling and gas composition before and after injection) are used to establish the model.
- + Representation of major mechanisms vs site data.
- Closed system \rightarrow production of CO₂ is overestimated.
- Reactive transport model is needed.

Radial 1D reactive transport model

storengy

PSL**⊛**49

- Dissolution of pyrite/calcite \rightarrow goethite/gypsum
- ! 22% of pyrite is dissolved. Rapid O₂ consumption (same profiles at 30 d and 0.5 yr)
- ! CO_2 accumulation grows with time, > 4 mol%
- > A slower kinetics is needed

Radial 1D reactive transport model

- Slower kinetics $\rightarrow \sim 2\%$ of pyrite is dissolved.
- Slower O_2 consumption $\rightarrow O_2$ can be transported further \rightarrow pyrite oxydation not only at near-wellbore zone.
- Damköhler number is analysed, confirms the results.
- CO_2 accumulation still grows with time, ~ 3 mol%
- Radial 2D reactive transport model is needed...

Reactive transport model at reservoir scale

O₂(g)

-0

 $O_2(aq)$

-(2)

Pyrite

SO42.

- Pyrite kinetics is a key factor: Damköhler number derived for O2 reactivity and pyrite kinetics explains gas changes. +
- The multiphase reactive transport model was built based on the field data. From batch to reservoir scales. +
- Importance of reactive transport -> geometry/scale changing is game changing
- This workflow can be applied for gas storage facilities (compressed air, biomethane, H_2) +

Extension to other gases

Extension to other gases

PSL 😿 53

storengy

• Biomethane and natural gas

• Hydrogen

- Additional complexity: microbial activity, parametrization of models.
- Modelling experiments (Haddad et al 2022 etc) with Monod like laws
- Upscaling, integrating to the storage model

HYTEC and consortium PGT

Since 2000, \mathbf{PGT}

- ► shared funding
- ► shared scientific research

► shared expertise

PGT V 2020 - 2023

Thank you !

Technical Challenges

Acknowledgment

06/06/2023

Representativeness of laboratory tests, compared to field observation

Upscaling factor to damp the reactivity between laboratory and storage conditions

Technical Challenges

58

Bacteria Reactivity Assessment Risk depending on storage type / Definition of the most favorable environment for hydrogen storage

Simplified chart for the assessment of microbial risks

Mitigations solutions for environment that are less favorable

- Biocides in porous reservoirs:
- are diluted in porous storages with increasing distance from the injection well
- become ineffective if the concentration falls below the effective concentration due to dilution
- can be degraded or even serve as nutrients themselves
- do not distribute ideally in the pore space, as the liquids do not migrate evenly in the layer

Hystories project consortium

Mineral and Energy Economy Research Institute Polish Academy of Sciences

Acknowledgment

This project has received funding from the Fuel Cells and Hydrogen 2 Joint Undertaking (now Clean Hydrogen Partnership) under Grant Agreement No 101007176. This Joint Undertaking receives support from the European Union's Horizon 2020 Research and Innovation program, Hydrogen Europe and Hydrogen Europe Research.

> Clean Hydrogen Partnership

Thank for your attention !

