

Full steel characterization

Dissemination level: PU - Public Hystories deliverable D4.3-0 Date: 30 June 2021

© European Union, 2021.

No third-party textual or artistic material is included in the publication without the copyright holder's prior consent to further dissemination by other third parties.

Reproduction is authorised provided the source is acknowledged.

Disclaimer: The information and views set out in this report are those of the author(s) and do not necessarily reflect the official opinion of the European Union. Neither the European Union institutions and bodies nor any person acting on their behalf may be held responsible for the use which may be made of the information contained therein

Author:

Bernd LODER

Montanuniversitaet Leoben, Austria

Revision History:

Revision	Revision date	Summary of changes
0	30 June 2021	Initial version

Checked by:

Name	Institute	Date	
Gregor MORI	Montanuniversitaet Leoben	30 June 2021	
Cyriane FOURNIER	Geostock	30.June 2021	

Approved by:

Name	Institute	Date
Gregor MORI WP4 Leader	Montanuniversitaet Leoben	30 June 2021
Arnaud REVEILLERE Project Coordinator	Geostock	28 June 2021

TABLE OF CONTENT

1.	Introduction	7
2.	Investigations	8

1.Introduction

In the course of work package WP4 the Hystories project, a material characterization of the steels selected at en earlier stage and reported in D4.2 (List of the steel grades to be investigated) was carried out by the Chair of General and Analytical Chemistry, Montanuniversitaet Leoben.

The following materials (steels) have been handed over:

Carbon steels:

- K55,
- L80,
- Quenched L80,
- P110,
- 20MnV5.

Corrosion Resistant Alloys:

- Alloy 625,
- Duplex 2205,
- 316L.

Chemical analysis, mechanical properties and microstructure were characterised for all materials.

Further investigations should be done (as soon as they are delivered):

- Tensile tests in air at room temperature for the 13%Cr steel,
- tensile tests in glycerine at 120°C and in air at room temperature for the welded K55,
- and for the welded K55 and 13%Cr steel characterization of the microstructure including the average grain diameter (and, if applicable, the average ferrit or austenite content).

2.Investigations

The chemical composition was determined by optical emission spectroscopy. The composition of all delivered carbon steels and of all Corrosion resistant alloys (CRAs) is shown in Table 1:

	Sample	С	Si	Mn	Р	S	Cu
	K55	0.37	0.21	1.19	0.014	0.006	0.11
	L80	0.24	0.20	1.00	0.014	0.0010	0.03
Carbon steels	quenched L80	0.25	0.19	1.01	0.017	0.0012	0.02
	P110	0.27	0.24	1.05	0.010	0.004	0.21
	20MnV5	0.18	0.20	1.12	0.016	0.004	0.16
	2205	0.019	0.48	1.73	0.025	0.0010	0.13
CRAs	Alloy 625	0.019	0.10	0.21	0.007	0.0006	0.01
	316L	0.012	0.35	1.61	0.025	0.0019	0.23

Table 1: Chemical composition of materials to be investigated

	Sample	Cr [%]	Ni [%]	Mo [%]	W [%]	V [%]	Nb [%]
	K55	0.18	0.09	0.09	0.01	-	-
	L80	0.31	0.05	0.02	<0.01	-	-
Carbon steels	quenched L80	0.31	0.04	0.02	<0.01	-	-
	P110	0.28	0.07	0.02	<0.01	-	-
	20MnV5	0.08	0.07	0.02	<0.01	0.06	-
	2205	22.38	5.09	3.40	0.04	0.03	-
CRAs	Alloy 625	19.65	57.79	7.56	0.02	0.03	3.10
	316L	16.92	11.27	2.11	0.03	0.11	-

	Sample	Ti [%]	Co [%]	B [%]	Al [%]	Sn [%]	N2 [%]
	K55	-	0.03	0.0002	0.020	0.009	0.0092
	L80	-	0.01	0.0019	0.039	0.004	0.0042
Carbon steels	quenched L80	-	0.01	0.0013	0.041	0.012	0.0040
	P110	-	0.01	0.0008	0.028	0.011	0.0083
	20MnV5	-	0.01	0.0001	0.024	0.013	0.0069
	2205	-	0.07	0.0017	0.009	0.006	0.1650
CRAs	Alloy 625	0.175	0.01	0.0008	0.080	0.003	0.0110
	316L	-	0.13	0.0007	0.005	0.007	0.0710

The chemical composition of the examined materials corresponds to the specification, except for the nickel-based Alloy 625. There the content of C, Cr, Ni, Mo and Nb is slightly too low, which might be caused due to the weld cladding process (oxidation of these element).

The mechanical properties of the materials were determined by means of a tensile test in a tensile testing machine from ZwickRoell, model "Beta 50". Every material was tested twice. The tensile tests for the K55 and L80 were done at room temperature in air and in glycerine at 120°C. All other materials were tested at room temperature in air. Table 2 documents the results obtained from the stress-strain diagrams of all conditions.

Sample	Temperature [°C]	Environment	Yield Strength [MPa]	Ultimate Tensile Strength [MPa]	Fracture Elongation [%]	Reduction of Area [%]
K55	RT	in air	407 ± 2	682 ± 8	15.4 ± 0.2	54.2 ± 0.8
K55	120	in glycerine	380 ± 5	673 ± 8	10.75 ± 0.3	41.3 ± 3.3
L80	RT	in air	549 ± 11	636 ± 1	18.7 ± 0.3	63.5 ± 1.5
L80	120	in glycerine	494 ± 4	607 ± 0	14.5 ± 0.0	48.1 ± 1.1
quenched L80	RT	in air	1225 ± 15	1606 ± 31	8.3 ± 0.3	51.2 ± 1.4
P110	RT	in air	894 ± 6	958 ± 10	11.8 ± 0.1	60.5 ± 0.2
20MnV5	RT	in air	361 ± 16	517 ± 6	21.3 ± 3.3	61.7 ± 0.2
Alloy 625	RT	in air	tbd			
Duplex 2205	RT	in air	517 ± 27	654 ± 47	23.2 ± 0.1	68.9 ± 0.7
316L	RT	in air	202 ± 7	469 ± 5	53.1 ± 1.4	79.9 ± 0.6

Table 2: Summarization of the tensile test results of all delivered steels

tbd....to be done

The steel with the highest strength (1606 \pm 30.5 MPa) is the quenched L80 steel grade. The material with the lowest strength (517 \pm 6.4) is a carbon steel, 20MnV5.

Metallographic sections were made of the materials to investigate their microstructure. The microstructure was examined in an Olympus optical microscope, model AX70.

All martensitic microstructures were etched to the grain boundaries of the previous austenite grains with Bechet-Beaujard. The grain size measurement was carried out according to a reference series of comparison in accordance with EN ISO 643. Carbon steels were etched using Nital. The 316L stainless steel and the 2205 duplex steel were etched with a Beraha colour etching agent. The nickel base alloy (Alloy 625) was etched electrochemically (Märkisches Werk, consists of 850ml H2O, 50ml HF and 100ml glycerine) at 4 V and 40 seconds.

Table 3 shows the microstructure, grain diameter and the etching method of all delivered materials. K55 steel grade consists of ferrite and pearlite with an average ferrite content of 26.1 \pm 2.4 % and an average grain diameter of 30 µm. The analysis of the microstructure of the steel grade L80 shows a tempered martensite structure with an average grain diameter of 20 µm. The microstructure of quenched L80 consists of martensite and has an average grain diameter of 15.6 µm. The microstructure of a P110 steel grade, which consists of tempered martensite, has an average grain diameter of 15.6 µm. The 20MnV5 carbon steel shows a

ferrite-pearlite microstructure, with an average ferrite content of 75.8 \pm 2.1 % and an average diameter of 11 μ m. The microstructure of welded Alloy 625 is dendritic. The microstructure of a Duplex steel 2205 consists of a ferrite and austenite, with an average austenite content of 39.5 \pm 3.1 %. The average grain diameter of the Duplex stainless steel is 20 μ m. The 316L stainless steel has an average grain diameter of 88.4 μ m.

material	microstructure	grain size [μm]	etchant
K55	100 μm	30	Nital
L80	100 μm	20	Bechet- Beaujard
L80	<u>50 μm</u>		Nital

Table 3: Microstructure of the investigated materials

quenched L80	ПО µт	15.6	Bechet- Beaujard
quenched L80	50 μm		Nital
P110	Т100 µm	15.6	Bechet- Beaujard
P110	50 μm		Nital

20MnV5-1	<u>50 μm</u>	11	Nital
Alloy 625	500 μm		electrolytically etched at 4 V and 40 sec.
Duplex 2205	100 μm	20	colour etching with Beraha
316L		88.4	colour etching with Beraha

All materials correspond to the current state of technology, regarding purity, grain size, composition, mechanical properties and microstructure. The chemical composition of the examined materials corresponds to their specification, except minor deviations for the nickel-based Alloy 625. The steel with the highest strength is the quenched L80 steel grade. The material with the lowest strength is carbon steel, 20MnV5. There is a fine microstructure for all investigated materials (grain size < 50 μ m), only the austenite shows the usual coarser grain size.

Hystories project consortium

ludwig bölkow systemtechnik

Mineral and Energy Economy Research Institute Polish Academy of Sciences

Acknowledgment

This project has received funding from the Fuel Cells and Hydrogen 2 Joint Undertaking under grant agreement No 101007176.

This Joint Undertaking receives support from the European Union's Horizon 2020 research and innovation programme and Hydrogen Europe and Hydrogen Europe Research

